Complete Intersection Singularities of Splice Type as Universal Abelian Covers
نویسنده
چکیده
It has long been known that every quasi-homogeneous normal complex surface singularity with Q–homology sphere link has universal abelian cover a Brieskorn complete intersection singularity. We describe a broad generalization: First, one has a class of complete intersection normal complex surface singularities called “splice type singularities,” which generalize Brieskorn complete intersections. Second, these arise as universal abelian covers of a class of normal surface singularities with Q–homology sphere links, called “splicequotient singularities.” According to the Main Theorem, splice-quotients realize a large portion of the possible topologies of singularities with Q–homology sphere links. As quotients of complete intersections, they are necessarily Q– Gorenstein, and many Q–Gorenstein singularities with Q–homology sphere links are of this type. We conjecture that rational singularities and minimally elliptic singularities with Q–homology sphere links are splice-quotients.
منابع مشابه
Universal Abelian Covers of Certain Surface Singularities
Every normal complex surface singularity with Q-homology sphere link has a universal abelian cover. It has been conjectured by Neumann and Wahl that the universal abelian cover of a rational or minimally elliptic singularity is a complete intersection singularity defined by a system of “splice diagram equations”. In this paper we introduce a Neumann-Wahl system, which is an analogue of the syst...
متن کاملUniversal Abelian Covers of Quotient - Cusps
The quotient-cusp singularities are isolated complex surface singularities that are double-covered by cusp singularities. We show that the universal abelian cover of such a singularity, branched only at the singular point, is a complete intersection cusp singularity of embedding dimension 4. This supports a general conjecture that we make about the universal abelian cover of a Q-Gorenstein sing...
متن کاملUniversal Abelian Covers of Surface Singularities
We discuss the evidence for and implications of a conjecture that the universal abelian cover of a Q-Gorenstein surface singularity with finite local homology (i.e., the singularity link is a Q-homology sphere) is a complete intersection singularity.
متن کاملUniversal abelian covers of superisolated singularities
The topology of a normal surface singularity does not determine the analytical invariants of its equisingularity class, but recent partial results indicated that this should be true under two restrictions, a topological one, that the link of the singularity is a rational homology sphere, and an analytical one, that the singularity is Q-Gorenstein. Neumann and Wahl conjectured that the singulari...
متن کاملTopology, Geometry, and Equations of Normal Surface Singularities
In continuing joint work with Walter Neumann, we consider the relationship between three different points of view in describing a (germ of a) complex normal surface singularity. The explicit equations of a singularity allow one to talk about hypersurfaces, complete intersections, weighted homogeneity, Hilbert function, etc. The geometry of the singularity could involve analytic aspects of a goo...
متن کامل